Performance Tuning...

DATABASE

PERFORMANCE

TUNING

Who Tunes?

The people who are involved with tuning:
- Database administrators
 Application architects
* Application designers
* Application developers
» System administrators
- Storage administrators
* Network administrators

What Does the DBA Tune?

Performance tuning areas:

* Application:
— SQL statement performance Shared with developers
— Change management

» Instance tuning:
— Memory
— Database structure
— Instance configuration

» Operating system interactions: g l
- /0 fa.l
— Swap Shared with SA = |
— Parameters

Introduction to Performance Tuning

 Monitoring and Diagnostics
— Monitoring using available tools
— ldentifying the problem
— Using AWR-based tools

« SQL Tuning

— Identifying and tuning SQL statements by influencing the
optimizer
— Managing change
SQL Performance Management
Real Application Testing
* Instance Tuning
— Tuning memory components
— Tuning space usage and I/O

How to Tune

Available tools:
» Basic diagnostics:
— Dynamic performance views
— Statistics
— Metrics
— Enterprise Manager pages
* AWR or Statspack
« Automatic Database Diagnostic Monitor (ADDM)
» DBA scripts

Tuning Methodology

Tuning steps:
* Identify the scope of the problem (OS, database, and so on).
* Tune the following from the top down:
— The design before tuning the application code
— The code before tuning the instance
* Tune the area with the greatest potential benéefit:

— ldentify the performance problem (AWR, Statspack).

— Analyze the problem, looking for skewed and tunable
components.

— Use appropriate tools to tune the components implicated.
» Stop tuning when the goal is met.

Performance Tuning Tools

Available tools:
* Basic:

Time model

Top wait events

Dynamic performance views and tables
Alert log

Trace files

Enterprise Manager pages o

» Add-in: Statspack g
» Options:

Diagnostics Pack
Tuning Pack)

€

Tuning Objectives

The objectives of tuning are:
* Minimizing response time
» Increasing throughput
» Increasing load capabilities
- Reducing recovery time

Top Timed Events

Top 5 Timed Foreground Events
riert L Wais [Timels [Avg vaims) [% 05 e | Wat Clase

free buffer waits 688 478 8,239 52.80 |Configuration
buffer busy waits 67632 3817 ob 24 .46 Concurrency
enq: TX-index contention| 18,705 1475 79 945 |Concurrency
log file sync - 11,306 860 Fils; 551 Commit
db file sequential read :180.952 002 3 3.53 User /O

DB Time

DB Time =

I R

DB Wait Time +

DB CPU Time

Time model statistics use time to identify quantitative effects about specific actions
performed on the database, such as logon operations and parsing. The most important
time model statistic is database time, or DB time. This statistic represents the total time

spent in database calls for foreground sessions and is an indicator of the total instance
workload.

CPU and Wait Time Tuning Dimensions

DB time = DB CPU time + DB wait time

CPU
time

Possibly
needs SQL
tuning

Scalable
application

Needs No gain
instance/RAC |«— achieved
tuning by adding
CPUs/nodes

Wait
time

Time Model: Overview

» The time model is a set of statistics that give an overview of
where time is spent inside the Oracle database.

+ All statistics use the same dimension: time.

» The statistics are accessible through:
— V$SYS TIME MODEL

— V$SESS TIME MODEL
» DB time represents the total time
spent in database calls by user sessions.
» A tuning goal is to reduce DB time.

- Using DB time, you can gauge the performance impact of
any entity of the database.

DB time

Time Model Statistics Hierarchy

The relationships between the time model statistics are listed in the slide. They form two trees:
background elapsed time and DB time. The time reported by a child in the tree is contained
within the parent in the tree.

+ DB time: Amount of elapsed time (in microseconds) spent performing database user-level
calls. This does not include the time spent on instance background processes such as
PMON. DB time is measured cumulatively from the time that the instance was started.
Because DB time 1s calculated by combining the times from all non-idle user sessions, it
1s possible for the DB time to exceed the actual time elapsed since the instance started.
For example, an instance that has been running for 30 minutes could have four active user
sessions whose cumulative DB time 1s approximately 120 minutes.

+ DB CPU: Amount of CPU time (in microseconds) spent on database user-level calls. This
time include processes on the runqueue.

Parse time elapsed: Amount of elapsed time spent parsing SQL statements. It includes
both soft and hard parse time.

Hard parse elapsed time: Amount of elapsed time spent hard-parsing SQL statements
SQL execute elapsed time: Amount of elapsed time SQL statements are executing. Note
that for SELECT statements, this also includes the amount of time spent performing
fetches of query results.

Connection management call elapsed time: Amount of elapsed time spent performing
session connect and disconnect calls.

Failed parse elapsed time: Amount of time spent performing SQL parses that ultimately
fail with some parse error.

Failed parse (out of shared memory) elapsed time: Amount of time spent performing
SQL parses that fail with out of shared memory error.

Hard parse (sharing criteria) elapsed time: Amount of elapsed time spent performing
SQL hard parses when the hard parse resulted from not being able to share an existing
cursor in the SQL cache.

Hard parse (bind mismatch) elapsed time: Amount of elapsed time spent performing
SQL hard parses when the hard parse resulted from bind type or bind size mismatch with
an existing cursor in the SQL cache.

Dynamic Performance Views

The Oracle database server maintains a dynamic set of data about the operation and
performance of the instance. These dynamic performance views are based on virtual tables that
are built from memory structures inside the database server. That 1s, they are not conventional
tables that reside in a database. V$ views externalize metadata contained in memory structures
of an Oracle instance. Some V$ views can show data before a database 1s mounted or open.
The VSFIXED TABLE view lists all the dynamic views.

Dynamic performance views include the raw information used by AWR and Statspack and
detail information about but not limited to:

Sessions

Wait events

Locks

Backup status

Memory usage and allocation
System and session parameters
SQL execution

Statistics and metrics

Note: The DICT and DICT COLUMNS views also contain the names of these dynamic

Dynamic Performance Views:
Usage Examples

SQL> SELECT sqgl text, executions

2 FROM|v$sqglstats
3 WHERE cpu time > 200000;

SQL> SELECT * FROM |v$session
2 WHERE machine = 'EDRSR9P1' and
3 logon time > SYSDATE - 1;

SQL> SELECT sid, ctime
2 FROM|v$lock| WHERE block > 0;

Dynamic Performance Views: Considerations

» These views are owned by SYS.

» Different views are available at different times:
— The instance has been started.
— The database is mounted.
— The database is open.
* You can query VSFIXED TABLE to see all the view names.

 These views are often referred to as “v-dollar views.”
* All reads on these views are current reads.

Displaying Statistics

Instance Activity Statistics are collected for:

» Sessions
— All sessions VSSESSTAT

— Current session VSMYSTAT
» Services VSSERVICE STATS
» System VSSYSSTAT

Displaying Statistics

The server displays a summary of all calculated instance activity statistics at the system level
in the VSSYSSTAT view. You can query this view to find cumulative totals since the instance
started. At all levels there is a statistics identifier that can be joined to the VSSTATNAME table.

System-level statistics
SQL> SELECT name, class, value FROM vS$sysstat;

NAME CLASS VALUE
logons cumulative 1 6393
logons current 1 10
opened cursors cumulative 1 101298
table scans (short tables) 64 6943
table scans (long tables) 64 344
redo entries 2 1126226

redo size 2 816992940

Service-Level Statistics

Service data 1s cumulative from the instance startup. The service name allows collection of
statistics by a connection service name. This is very useful for performance monitoring by
application. Every user that connects uses a specific service name per application.

Example

There are always two services defined: SYSSBACKGROUND and SYSSUSERS. Upto 116
additional services may be created based on the SERVICE NAMES parameter or set with the
DBMS SERVICE package. Service data is cumulative from the instance startup.

The Oracle database server displays all calculated service statistics in the VSSERVICE STAT

view. You can query this view to find service cumulative totals since the instance started.
SQL> select service name, stat name, value

2 from v$service stats;

SERVICE NAME STAT NAME VALUE
SYSSUSERS user calls 6977
SERV1 user calls 532
SYSSBACKGROUND user calls 0
orcl.oracle.com user calls 183948
orclXDB user calls 0
SYSSUSERS DB time 84608280
SERV1 DB time 222965588
SYSSBACKGROUND DB time 0

orcl.oracle.com DB time 55877745

Displaying SGA Statistics

SQL> SELECT * FROM VS$SGAINFO;

Fixed SGA Size

Redo Buffers

Buffer Cache Size

Shared Pool Size

Large Pool Size

Java Pool Size

Streams Pool Size

Shared IO Pool Size
Granule Size

Maximum SGA Size

Startup overhead in Shared Pool
Free SGA Memory Available

1303132
17780736
50331648

142606336

4194304

12582912
0

0

4194304
836976640
41943040
608174080

RES

No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No

Wait Events

* A collection of wait events provides information about the
sessions that had to wait or must wait for different reasons.

* These events are listed in the VSEVENT NAME view, which
has the following columns:
— EVENT#

— NAME

— PARAMETERI1
— PARAMETERZ2
— PARAMETER?3

Wait Events

All wait events are named 1n the VSEVENT NAME view, including:
* Free buffer waits
» Latch free
» Buffer busy waits
« Db file sequential read
» Db file scattered read
» Db file parallel write
* Undo segment tx slot
* Undo segment extension

Each event 1s assigned to a wait class. This assignment 1s shown 1n the VSEVENT NAME

view. Each event can have additional parameters returned with the event, columns
PARAMETER1 through PARAMETER3 show the meaning of these parameters.

Note: Time information columns for wait events are populated only if the
TIMED STATISTICS initialization parameter 1s set to true.

Commonly Observed Wait Events

Wait Event Area

Buffer busy waits Buffer cache, DBWR
Free buffer waits Buffer cache, DBWR, 1/O
Db file scattered read, I/0, SQL Tuning

Db file sequential read

Enqueue waits (enq:) Locks

Library cache waits Mutexes/Latches

Log buffer space Log buffer /O

Log file sync Over-commit, 1/O

Using Features of the Packs

Monitoring and tuning
with packs

Database Diagnostics Pack

* Automatic Workload Repository

« Automatic Database Diagnostic Monitor (ADDM)

+ Active Session History (ASH)

» Performance monitoring (database and host)

= Event notifications: notification methods, rules, and schedules
* Event history and metric history (database and host)

* Blackouts

* Dynamic metric baselines

* Monitoring templates

Database Tuning Pack Database Configuration
* SAL Access Advisor Management Pack
» SQL Tuning Advisor » Database and Host Configuration
» Automatic SQL Tuning * Deployments
+ SQL Tuning Sets = Patch Database and View Patch Cache
» Automatic Plan Evolution * Patch staging
of SAL Plan Management * Clone Database
+ SQL Monitoring » Clone Oracle Home
+ Reorganize objects » Search configuration
* Compare configuration
= Policies

Monitoring and tuning
without packs

- SQL traces

- Statspack

« System statistics
« Wait model

« Time model

« OS statistics

* Metrics

« Service statistics
* Histograms

* Optimizer statistics
« SQL statistics

User Trace Files

Server-process tracing can be enabled or disabled at the
session or instance level.

A user trace file contains statistics for traced SQL
statements in that session.

User trace files are created on a per server process basis.

User trace files can also be created by:
— Performing a BACKUP CONTROL FILE TO TRACE

— Process errors

User Trace Files
Server processes can generate user trace files at the request of the user or DBA.
Instance-Level Tracing

Instance-level tracing should only be enabled when absolutely necessary. Tracing all sessions
will create an I/O load and can fill the file system quickly. This trace logging is enabled or
disabled by the EXEC DBMS MONITOR.DATABASE TRACE ENABLE ().

Session-Level Tracing

The following statement enables the writing to a trace file for a particular session:
EXECUTE DBMS MONITOR.SESSION TRACE ENABLE (8,12,
wailts=>TRUE, binds=>TRUE) ;
where 8 and 12 are the system identifier and serial number of the connected user. Typically
only a DBA has the permissions required to enable tracing on any session.

The DBMS MONITOR package 1s created when the catproc. sqgl script 1s run. This script 1s

located in the following directory:
* On UNIX: SORACLE HOME/rdbms/admin

* On Windows: $ORACLE HOME%\rdbms\admin

Automatic Workload Repository: Overview

External clients

» (EM) (SQL*Plus) --

-

(= -
Efficient p| V$ || DBA * [€—
in-memory AWR
statlstl_cs . snapshots
collection

\) N~

Y
> (ADDM) Self-tuning __.(Self-tuning

Internal clients componen component

The AWR 1nfrastructure consists of two major parts:

« An in-memory statistics collection facility that 1s used by various components to collect
statistics. These statistics are stored in memory for performance reasons. Statistics stored in
memory are accessible through dynamic performance (VS$) views.

« AWR snapshots represent the persistent portion of the facility. The AWR snapshots are
accessible through data dictionary (DBA) views and Database Control.

Statistics are stored in persistent storage for several reasons:
» The statistics need to survive instance crashes.
* Historical data for baseline comparisons 1s needed for certain types of analysis.
* Memory overtlow: When old statistics are replaced by new ones due to memory shortage,
the replaced data can be stored for later use.

The memory version of the statistics 1s transferred to disk on a regular basis by a background
process called MMON (Manageability Monitor).

Automatic Workload Repository Data

f)
e
o

Base sQL Advisor
statistics statistics results

s

Metrics ASH
\ AWR /

Workload Repository

ADDM finds
top problems.

>

y

SYSAUX
SGA :
6:00 a.m. Snapshot 1
In-memory 7:00 a.m., Snapshot 2
o _ I
statistics ggg a.m. Snapshot 3
SRR Snapshot 4
@ x :

9:30 a.m.

_\
_/

AWR Snapshot Purging Policy

SYSAUX tablespace

sys schema

Snapshot
Snapshot
Snapshot

Snapshot Every night
napsho

Generating AWR Reports in SQL*Plus

WORKLOAD REPOSITORY report for
 DBName | DBId_ | Instance | instrum | Starp Time | Release | RAC

IORCL | 1237161768 |orcl | 1]|03-Feb-1017:02 [11.201.0 |[NO

Memary (GB

|edrsr10p1 us.oracle.com |L|nux IA (32-bit) | 1 | 1 | | 1.97
R

Begin Snap: 03-Feb-10 17:48:15

End Snap: 270| 03-Feb-1019:22:03 37 27

Elapsed: 93.79 (mins)

DB Time: 25.76 (mins)

Reading the AWR Report

 The first section provides
— Overview
— Most significant diagnostics
 Additional pages
— Detailed statistical information for specific areas

Top § Timed Foreground Events

MRS [T] PRI

buffer busy waits 55,295 | 91.85 |Concurrency
log file sync 114 26 | 230 3.48 [Commit

DB CPU | 25| 3.31

db file sequential read | 6,671 6| 1 0.75 |User /O
eng: HW - contention | 428 S| 11 0.60 |Configuration

Compare Periods: Load Profile

DB time:
CPU time:
Redo size:

Logical reads:

Block
changes:

Physical
reads:

Physical
writes:

User calls:
Parses:

Hard parses:
Sors:
Logons:
Executes:
Transactions:

5.21

0.21
1,339,092.39
10,193.42
10,784.82

89.16
50.32

16.55
29.02
3.34
17.01
0.34

O R 2
0.42

2.12

0.24
1,336,024.21
5,883.66
10,/63.85

89.36
59.85

23.25
34.28
2.76
13.23
0.34
5.377.51
0.78

-59.31 12.55
14.29 0.50
-0.233226,176.75
-42.28 24 558.26
019 259683.08
0.22 214.681
18.94 121.23
40.48 39.87
18.13 69.92
-17.37 B8.06
-22.22 40.98
0.00 0.81
-0.22 12963.92
85.71

Ist per sec | 2nd per sec) %Diff| 1st per txn | 2nd per txn | %Diff

271 -78.41

0.30 -40.00
1,708,280.64 -47.05
7523.02 -69.37
13,/62.98 -47.03

114.26 -46.81
7b.52 -36.88

29.73 -25.43
43.83 -37.31
3.53 -56.20
16.92 -58.71
0.43 -46.91
b,575.64 -47.04

Using AWR-Based Tools

This practice covers the following topics:

» Creating and managing Automatic Workload Repository
(AWR) snapshots

» Generating and viewing the sections of an AWR report

» Generating and viewing the sections of a Compare Periods
report

Top SQL Reports
SQL by Elapsed Time

Elapsed Time CPU Time Elap per Exec % Total DB . S0L
is) is) is) Time ' Module

1 ms‘ 1 ?5?‘ 0.57 ‘ 95 22

SOL Text

select time _id,
QUANTITY _SOLD...

LARE pid NUMBER = 37; ...

3| 10| 0| | 2.94

SQL by CPU Time

("F'Il TIt‘I'IEl Elapsed Time CPU per Exec % Total DB
is) (s Tﬂtal Time

fulZ2gq80bZ2kval

SOL Text

1,006 1,757 95.58 8522 fubZ2qB0bZkval |DEMOD select time_id,
_ QUANTITY _SOLD. ..
1" 21] 2.29 1.99 710ydqBqlfidr ||SQLPlus DECLARE pid NUMBER = 39,
SQL by Executions
Rows per CPU per Exec S0L
' 1,757 5271 0.26 0.57 [ful2gqB0b2kval DEMO select time_id,
QUANTITY_SOLD.
41| 284 0.68 0.00 0.00 [96g93hnuzjw | select /*+ rule */ bucket_cnt,...

SQL by Buffer Gets

Buffer Executions Gets per %Total CPU Time Elapsed Time SOL Id SQaL SOL Text
Gets Exec fs) is) Module

5 579 956 1,757 317584 9392 453.08 100649 ful2 gB0b2 kval DEMO select time_id,
CIUANTITY _SOLD...

134 514/ 0| 228 10.84|| 21.04 710ydgBq1fi3r |SOL*Plus |DECLARE pid NUMBER = 39, ...

Common Tuning Problems

The most common tuning problems:

Inefficient or high-load SQL statements

Suboptimal use of Oracle Database by the application
Undersized memory structures

Concurrency issues

I/O issues

Database configuration issues

Short-lived performance problems

Degradation of database performance over time

Unexpected performance regression after environment
changes

Locking issues

ADDM Tuning Session

An ADDM tuning session follows the same procedure as a
manual tuning session, but combines steps.

ADDM Tuning Session Manual Tuning Session

Generate the ADDM report. Collect current statistics.

Compare current statistics with a previous set; look
up in a performance-issues knowledge base.

Define the problem and make recommendations.

Review the recommendations. Build a trial solution.

Implement the Implement and measure the change.
recommendations.

Review the next ADDM report. | Decide: “Did the solution meet the goal?”

Active Session History: Overview

 Stores the history of database time
« Samples session activity in the system including:

SQL identifier of a SQL statement

Object number, file number, and block number
Wait event identifier and parameters

Session identifier and session serial number
Module and action name

Client identifier of the session

Service hash identifier

Blocking session

* Is always on for first fault analysis
* No need to replay the workload

Accessing ASH Data

VSACTIVE SESSION HISTORY

DBA HIST ACTIVE SESS HISTORY
ASH report

EM Diagnostic Pack performance pages

ASH Report: General Section

ASH Report For ORCL/orcl
| DBName | _DB1d__ | instance | instoum | Release JRAC| Host

|ORCL | 1236987013 [orcl [1[11.201.0 [NO |edtdr35p1.us.oracle.com
m
2| 459M (100%) | 108M (23.5%) | 172M (37.5%) | 4.0M (0.9%)

Sample Time Data Source

08-Feb-1014:28:02) VSACTIVE_SESSION_HISTORY :

08-Feb-10 14:33:02 | VSACTIVE_SESSION_HISTORY

|Anal'ysis Begin Time: ’
I
l
|Sample Count: [0|
I
|
|

\Analysis End Time:

[Elapsed Time: 5.0 (mins) |
|average Active Sessions: 0.00 |
|avg. Active Session per CPU: 0.00 |

[Report Target None specified |

V$ACTIVE SESSION HISTORY <

DBA HIST ACTIVE SESSION HISTORY <«

ASH Report Structure

The slide shows you the various section of the ASH Report. The ASH Report follows the pattern
of the AWR report. Starting from the upper right of the slide, the report sections are as follows:

Top Events: Reports the user events, background events, and the event parameter values
Load Profile: Reports the top service/module, top clients, identifies the type of SQL
commands and top phases of execution

Top SQL: Reports top SQL statements associated with the top events, SQL associated with
the top rowsources, top SQL using literals, and the SQL text for these SQL statements.

Top PL/SQL Procedures: Lists the PL/SQL procedures that accounted for the highest
percentages of sampled session activity

Top Java Workload: Describes the top Java programs in the sampled session activity

Top Sessions: Reports the top sessions found waiting, top blocking sessions, and aggregates
for PQ) sessions

Top Objects/Files/Latches: Reports the top objects, files, or latches that were involved 1n a
wait

Activity Over Time: Reports the top three wait events for 10 equally sized time periods
during the report period

Conclusion

* Do not forget to use ASH where needed
* It is important to check ADDM report

* Consider using SQL Plan Management

* Compare the numbers over time

* Reduce long full table scans in OLTP

* Minimize locking usage

* Do not forget to do maintenance

* Do not forget to use Real time ADDM

SQL Statement Processing Phases Parse Phase

» Parse phase:
— Always:
Checks syntax
Checks semantics and privileges

— Soft parse:
Bind < Searches for the statement in the shared pool
— Hard parse:

Merges view definitions and subqueries
Determines execution plan

Ao .

There are two types of parse operations:

« Soft parsing: A SQL statement is submitted, and a match is found in the shared pool. The match
can be the result of a previous execution by another user. The SQL statement is shared, which i1s
good for performance. However, soft parses still require syntax and security checking, which
consume system resources.

« Hard parsing: A SQL statement 1s submitted for the first time, and no shareable match is found
in the shared pool. Hard parses are the most resource-intensive and unscalable, because they
perform all the operations involved in a parse.

When bind variables are used properly, more soft parses are possible, thereby reducing hard parses
and keeping parsed statements in the library cache for a longer period.

SQL Statement Processing Phases: Bind

+ Bind phase:

— Checks the statement for bind variables

— Assigns or reassigns a value to the bind variable
* Bind variables impact performance when:

— Parsing is reduced by using a shared cursor.

— A different execution plan might benefit performance with
different bind values.

SQL Statement Processing Phases: Bind

During the bind phase:
» The Oracle Database checks the statement for references to bind variables.
« The Oracle Database assigns or reassigns a value to each variable.

When bind variables are used 1n a statement, the optimizer assumes that cursor sharing 1s intended
and that different invocations should use the same execution plan. This helps performance by
reducing hard parses.

Role of the Oracle Optimizer

» The Oracle query optimizer determines the most
efficient execution plan and is the most important step in
the processing of any SQL statement.

* The optimizer:

Evaluates expressions and conditions
Uses object and system statistics

Decides how to access the data

Decides how to join tables

Decides which access path is most efficient

Role of the Oracle Optimizer
The optimizer 1s the part of the Oracle Database that creates the execution plan for a SQL statement.
The determination of the execution plan is an important step in the processing of any SQL statement
and can greatly affect execution time.

The information needed by the nptimizér includes:
« Statistics gathered for the system (I/O, CPU, and so on) as well as schema objects (number of

rows, index, and so on)
« Information in the dictionary
» WHERE clause qualifiers

 Hints supplied by the developer
When you use diagnostic tools such as Enterprise Manager, EXPLATN PLAN, and SQL*Plus
AUTOTRACE, you can see the execution plan that the optimizer chooses.

TOP SQL Reports

SQL Ordered by CPU Time

CPU R
Elapsed SOL Id SQL Module

Time | Executions

120| 004| 1692| 624 8450| 2.16 [SgvchixuSca3g | [DECLARE job BINARY_INTEGER = ...

2880 | 000 720 2.15 [104.77 | 0.00 [Bv7n0y2bg83n8 [OEM.SystemPool BEGIN
EMDW_LOG set_contesxd(MGM...
2| 073 465 146 | 90.47| 0.00 |dayg182skdlks | linsert into wih$_memory_target...
2| 073| 465 1.46 | 99.50| 0.00 [pm2pwrporBrug | lselect sga_size 5, sga_size_fa...

SQL Ordered by Gets

Executions YaTotal i':\i‘i_jl M SQL Module

03,294 777.45| 2877 6.24| 8459 2.16 [Bgvchixudcadg DECLARE job BINARY_INTEGER =

20,912 5.971 501 022 0.48| 9268 0.02 [BvwvBhx82ymmm [OEM.SystemPool UPDATE
MGMT_CURRENT_METRICS SE...

27 551 19 [1.45005| 850 077 9.80[0.00 [5kSv1ah25tb2c [OEM.SystemPool BEGIN
EMD_LOADER.UPDATE_CURREN...

| 23256 6.597 353 7.47| 045(103.56| 0.00 [cm5vu20ittngl | |select M+ connect_by_filterin...

18,748 871 2704 578 027 [100.13| 0.05 [Bamygbivag2y? |DEM.SystemPool INSERT INTO
MGMT_METRICS_RAW(C...

The SQL Monitoring Report

Database Instance: orcl.example.com

mMonitored SOL Execution Details

SOL Text

= Monitored SOL Executions >

SQL Monitoring Report

SELECT count(*) FROM moni_test 11, moni_test 2 WHERE t1 c=t2 c AND 11 c=1

Global Information

Status : EXECUTING
Instance ID Hp

Session ID =125

SOL ID : 0j1thSnmgmd 37
SOL Execution ID : 18777217

Plan Hash ¥Yalue :1383308631

Execution Started : 03/09/2009 08:37:45
First Refresh Time: 03/09/2009 08:37:5%
Last Refresh Time : 03/09/2009 08:54:13

Il B YWHILE(S

989 0.01

¥ i ¥

27| S36| 18 18

S0OL Plan Monitoring

Rows
(Estim)

Cost

Time
Active(s)

Start

ctive

Start

Rows

Memory

Activity Activity Detail

* (Actual)

(percent) (sample ¥)

0 SELECT STATEMENT 1

> 1| SORT AGGREGATE 1 99z +1 1 0
2| HASH JOINM 40305M | 181K 30| +2 1(4210M| 9044k I
3| INDEX FAST FULL SCAN |MONI_TEST_C_INDX 201k 114 1| +14 1| z00K

-> 48 INDEX FAST FULL SCAN | MONI_TEST_C_INDX 201K 114 975 +14 1| 67066 I

Logged in As S¥S

BV

What Is an Execution Plan?

An execution plan is a set of steps that the optimizer performs
when executing a SQL statement and performing an operation.

What Is an Execution Plan?

When a statement 1s executed, the server executes steps of the plan created by the optimizer. Each
step either retrieves rows of data physically from the database or prepares them in some way for the
user 1ssuing the statement. The combination of steps that are used to run a statement 1s called an
“execution plan.”

An execution plan includes an access method for each table that the statement accesses and an
ordering of the tables (the join order). The optimizer also uses different methods to combine the rows
from multiple tables (the join method). The steps of the execution plan are not performed in the order

in which they are numbered.
/ \

Methods for Viewing Execution Plans

To view execution plans, use:
* Enterprise Manager SQL pages

- DBMS_XPLAN methods to view plans from:
— Automatic Workload Repository
— V$SQL PLAN
— SQL Tuning Sets
— Plan table
» SQL Trace (event 10046) with tkprof
* SQL*Plus AUTOTRACE

* EXPLAIN PLAN

Uses of Execution Plans

Determining the current execution plan
|dentifying the effect of indexes

Determining access paths

Verifying the use of indexes

» Verifying which execution plan may be used

t t
SORT SORT
t 4
HJ HJ
P P
NL HJ

2 X A X

DBMS XPLAN Package: Overview

* The DBMS XPLAN package provides an easy way to display
the output from the:

— EXPLAIN PLAN command
— Automatic Workload Repository (AWR)

— V$SQL PLAN and V$SQL PLAN STATISTICS ALL fixed
views

* The DBMS XPLAN package supplies three table functions

that can be used to retrieve and display the execution plan:
— DISPLAY

— DISPLAY AWR
— DISPLAY CURSOR

EXPLAIN PLAN Command: Example

»»— EXPLAIN PLAN >
I_ SET STATEMENT ID J
= 'text’
» >
INTO your plan table
> FOR statement >

EXPLAIN PLAN

SET STATEMENT ID = 'demoOl' FOR

SELECT e.last name, d.department name
FROM hr.employees e, hr.departments d
WHERE e.department id = d.department id;
IExplained.

Note: The EXPLAIN PLAN command does not
actually execute the statement.

EXPLAIN PLAN Command: Output

SELECT PLAN TABLE OUTPUT FROM TABLE (DBMS XPLAN.DISPLAY());

Plan hash walue: 1343509718

Id	Operation	Name	Rows	Bytes	Cost (%CPU
0	SELECT STATEMENT		106	2862	6 (17
1	MERGE JOIN		106	2862	6 (17
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (0
3	INDEX FULL SCAN	DEPT ID PK	27		1 (0
* 4	SORT JOIN		107	1177	4 (25
5	TABLE ACCESS FULL	EMPLOYEES	107	1177	3 (0]

4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
filter ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

18 rows selected.

Reading an Execution Plan

@ SELECT STATEMENT
(:} MERGE JOIN

TABLE ACCESS BY
INDEX ROWID (:%:) (:E:) SORT JOIN
of DEPARTMENTS

INDEX FULL SCAN O FULL TABLE SCAN

3 5
DEPT ID PK of EMPLOYEES

Querying V$SQL PLAN

SELECT PLAN TABLE OUTPUT FROM
TABLE (DBMS XPLAN.DISPLAY CURSOR('cfzOcdukrfdnu'));

SQL ID cfzO0cdukrfdnu, child number 0

SELECT e.last name, d.department name
FROM hr.employees e, hr.departments d WHERE
e.department id =d.department id

Plan hash wvalue: 1343509718

Id	oOperation	Name	Rows	Bytes	Cost (%CPU
0	SELECT STATEMENT				6 (100]
1	MERGE JOIN		106	2862	6 (17
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (0]
3	INDEX FULL SCAN	DEPT ID PK	27		1 (0]
* 4	SORT JOIN		107	1177	4 (25
5	TABLE ACCESS FULL	EMPLOYEES	107	1177	3 (0]

4 - access("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")
filter ("E"."DEPARTMENT ID"="D"."DEPARTMENT ID")

24 rows selected.

Querying the AWR

SELECT PLAN TABLE OUTPUT FROM TABLE
(DBMS XPLAN.DISPLAY AWR('454rug2yval8w'));

PLAN TABLE OUTPUT

select /* example */ * from hr.employees natural join hr.departments

Plan hash wvalue: 2052257371

1d	Operation	Name	Rows	Bytes	Cost(%CPU)	Time
0	SELECT STATEMENT				6 (100)	
1	HASH JOIN		11	968	6 (17)	00:00:01
2 TABLE ACCESS FULL	DEPARTMENTS	11	220	2 (0)	00:00:01	
	TABLE ACCESS FULL	EMPLOYEES	107	7276	3 (0)	00:00:01

SQL Trace Facility

» Usually enabled at the session level

» Gathers session statistics for SQL statements grouped by
session

» Produces output that can be formatted by TKPROF

Trace
Server ?rocess | filo
.................... .’. TKPROF . RePOI't
file

Database

SQL Trace Facility

If you are using Standard Edition or do not have the Diagnostics Pack, the SQL Trace facility and
TKPROF let you collect the statistics for SQL executions plans to compare performance. A good way

to compare two execution plans is to execute the statements and compare the statistics to see which
one performs better. SQL Trace writes its session statistics output to a file, and you use TKPROF to
format 1t. You can use these tools along with EXPLATIN PLAN to get the best results.

SQL Trace facility:
 (Can be enabled for a session or for an instance

« Reports on volume and time statistics for the parse, execute, and fetch phases
* Produces output that can be formatted by TKPROF

When the SQL Trace facility 1s enabled for a session, the Oracle Database generates a trace file
containing session statistics for traced SQL statements for that session. When the SQL Trace facility
1s enabled for an instance, the Oracle Database creates trace files for all sessions.

Note: SQL Trace involves some overhead, so you usually do not want to enable SQL Trace at the
instance level.

The SQL Trace facility provides performance information on individual SQL statements. SQL Trace
provides the following, including row source information:

« Parse, execute, and fetch counts

* CPU and elapsed times

 Physical reads and logical reads

« Number of rows processed

* Misses on the library cache

« Username under which each parse occurred

« Each commit and rollback

« Row operations showing the actual execution plan of each SQL statement

« Number of rows, number of consistent reads, number of physical reads, number of physical

writes, and time elapsed for each operation on a row

Note: A summary for each trace file can be obtained using the TKPROF utility.

NOoO Ok OODN-=

How to Use the SQL Trace Facility

Set the initialization parameters.
Enable tracing.
Run the application.
Disable Trace.
Close the session.
Format the trace file.
Interpret the output.
sQL Trace > T;ﬁze

! |

. TKPROF

Database

Report
file

Functions of the Query Optimizer

Parsed query

(from parser)

FLLLET LR LR R R R R] R R R R R R R R LR L] -
= "

Query
transformer

l Transformed query

g Estimator

<

l Query + estimates

Plan
generator

Statistics

Query plan

(to row-source generator)

Dictionary

Selectivity

» Selectivity represents a fraction of rows from a row
source.

— Selectivity affects the estimates of 1/O cost.
— Selectivity affects the sort cost.
» Selectivity lies in a value range from 0.0 to 1.0.

 When statistics are available, the estimator uses them to
estimate selectivity.

 When statistics are not available the estimator uses
default values or dynamic sampling.

» With histograms on columns that contain skewed data,
the results are good selectivity estimates.

Cardinality and Cost

+ Cardinality represents the number of rows in a row source.
 Cost represents the units of work or resource that are used.

Cardinality and Cost

Cardinality: Represents the number of rows in a row source. Here, the row source can be a base
table, a view, or the result of a join or GROUP BY operator. If a select from a table 1s performed, the
table 1s the row source and the cardinality 1s the number of rows in that table.

Note: Not all of the possible row sources are considered here.

Cost: Represents the number of units of work (or resource) that are used. The query optimizer uses
disk I/0O, CPU usage, and memory usage as units of work. So the cost used by the query optimizer
represents an estimate of the number of disk I/Os and the amount of CPU and memory used in
performing an operation. The operation can be scanning a table, accessing rows from a table by using
an index, joining two tables together, or sorting a row source. The cost of a query plan is the number
of work units that are expected to be incurred when the query 1s executed and 1its result 1s produced.

Optimizer Statistics

The optimizer depends on various statistics to determine an
optimal execution plan for a SQL statement.

* Most statistics are gathered automatically and are controlled
by statistic preferences.
— Object statistics
— Dictionary statistics
+ Other statistics are only gathered manually.
— Statistics on fixed objects
— Operating system statistics

Optimizer Parameters

Optimizer parameter can be set at:
* The system level
* The session level
You can display the optimizer parameter settings for:
» The System with v$SYS OPTIMIZER ENV
» The sessions with VSSESS OPTIMIZER ENV

» A specific plan using V$SQL OPTIMIZER ENV joined with
VS$SSQL Or VSSQLAREA

Using Hints

Hints
» Are directives (suggestions) to the optimizer
- Require changing the code
 Are useful to test specific access paths
* Must be maintained through upgrades

SELECT /*+ INDEX (tablename indexname) */ ..

Full Table Scans

* Lack of index * Multiblock I/O calls
» Large amount of data » All rows below high-
« Small table water mark

select * from emp where ename = 'KING';

Id	Operation	Name	Rows	Bytes	Cost
0	SELECT STATEMENT		1	22	2
* 1	TABLE ACCESS FULL	EMP	1	22	2

The optimizer uses a full table scan in each of the following cases:

* Lack of index: If the query is unable to use any existing indexes, then 1t uses a full table scan.
For example, 1f there 1s a function used on the indexed column in the query, the optimizer 1s
unable to use the index and instead uses a full table scan.

« Large amount of data: If the optimizer thinks that the query will access most of the blocks in
the table, then 1t uses a full table scan, even though indexes might be available.

» Small table: If a table contains blocks fewer than the value of
DB FILE MULTIBLOCK READ COUNT under the high-water mark, than a full table scan

might be less costly because this can be read in a single I/O call.

Row ID Scans

The row ID specifies the data file and data block containing
the row as well as the location of the row in that block.

explain plan for
select * from emp where rowid='AAAJSQAAFAAABsVAAC';

Index Operations

Types of index scans:
* Index unique scan
B*Tree Index
* Index range scan IX EMP
- Index range scan descending -
* Index skip scan
* Full scan
 Fast-full index scan
* Index join

 Bitmap operations

B = block

Table EMP

B B B

Bitmap Indexes

Keyvalues¢
BE ||1({0{0|0({0{0]0({0{0{0|0|(0
DE|[0]1]0{0{0]/0]0]0|0{0{0]0 Bitmap for
=R 00| 1]1]| 1] 1]0]0[0]0]0]0 ey value FR
L |[(0|0|0{0{0|{0|1]0{1|{0|0|0
NL ||0|0{0{0{0|0|0|{1{{(0{0]|0|0
UK1/0]0(0{0|0|0|0({D[{0[1]1]1
\\The bit for the eighth record is set
because the row has the value NL
Keyvalues¢ in the COUNTRY column.
M [1]1]0[1[1]{0[1]1{1]1]1 _
F _[0/0]0]1[0]0[1]0]0[0[0|0||«— Bitmap for
key value F

Bitmap Index Access

create bitmap index CUST COUNTRY on CUST (country iso)

SELECT CUST LAST NAME
FROM CUST
WHERE country iso = 'FR';

Id	Operation	Name	Rows	Cost
0	SELECT STATEMENT		2921	368
1	TABLE ACCESS BY INDEX ROWID	CUST	2921	368
2	BITMAP CONVERSION TO ROWIDS			
* 3	BITMAP INDEX SINGLE VALUE	CUST COUNTRY		

3 — access (COUNTRY ISO<‘FR’)

/O Architecture

Oracle Database 11g includes three standard storage
options:
* File system
— Network attached storage (NAS)
— Storage area network (SAN)
— Direct attached storage

+ Automatic Storage Management (ASM)

Database File Location for Oracle Database

A database includes several files that store the user data, database metadata, and information required to
recover from failures. As an administrator, you decide what kind of storage subsystem to use for these files.

You can select from the following options:
» File System—This default option creates database files that are managed by the file system of your operating

system. You can specify the directory path where database files are to be stored. Oracle Database can create
and manage the actual files.

If you are not certain about which option to use, then select File System (the default).

e Automatic Storage Management—This option enables you to place your data files in Oracle Automatic
Storage Management (Oracle ASM) disk groups. If you choose Oracle ASM, then Oracle Database automatically
manages database file placement and naming. For environments with a large number of disks, this option
simplifies database administration and maximizes performance. Oracle ASM

performs software striping and mirroring at the file level for maximum storage flexibility, performance, and
availability.

Oracle ASM uses an Oracle ASM instance, which is distinct from the database instance, to configure and manage
disk groups. A single Oracle ASM instance can provide storage for multiple databases on the same server.

What Is Automatic Storage Management?

ASM:
* Is a portable and high- Application
performance cluster file system
- Manages Oracle database files Database
- Distributes data across disks Fit'em
to balance load Sl ASM
: . : : Volume
* Provides integrated mirroring manager
across disks _
Operating system
+ Solves many storage

management challenges
« Encapsulates the SAME methodology

Tuning ASM

 Adjust rebalancing speed
« Set redundancy on a file basis
* Set DISK ASYNCH IO to TRUE

Failure L Read/Write Size| Used
Select Disk - Group ath Errors|State [Mode | (GB)| (GB)Used (%)
I~ DATA OODOODATA_OOOO /fdev/xvdc ONORMALONLINE 2.00 C4o 23,14
I~ DATA 0001 DATA_D001 /dev/xvdd ONORMALONLINE 2.00 0.45 2 71
I~ DATA D0D02DATA_0002 /dev/xvde ONORMAL ONLINE 2.00 0.4 s 22,80
I~ DATA OD0O3DATA_0003 /dev/xvdf ONORMALONLINE 2.00 0.4 R 2275

How Many Disk Groups per Database

- Two disk groups are recommended:
— Leverage maximum of LUNSs

Data DG | FRA DG
— Backup for each other < ERP DB —
— Lower performance may be e CRM DB >
used for FRA (or inner tracks) — 'R DB >

- Exceptions: L

— Additional disk groups for different capacity or performance
characteristics

— Different ILM storage tiers

ASM Guidelines

« Use external RAID protection when possible.

» Create logical units (LUNs) using:
— Qutside half of disk drives for highest performance
— Small disk, high RPM (for example, 73 GB/15k RPM)

» Use LUNs with the same performance characteristics.
» Use LUNs with the same capacity.
» Maximize the number of spindles in your disk group.

ASM Instance Initialization Parameters

- ASM instances have static memory needs.
» Use Automatic Memory Management.

 Using default SGA sizing parameters should be enough
for most configurations:

INSTANCE TYPE = ASM

DB UNIQUE NAME = +ASM

ASM POWER LIMIT = 1

ASM DISKSTRING = ' /dev/rdsk/*s2', '/dev/rdsk/cl*’
ASM DISKGROUPS = dgroupA, dgroupB

MEMORY TARGET = 256M /* Default value */

Dynamic Performance Views

VSASM TEMPLATE
VSASM CLIENT VSASM DISKGROUP
1

A4 L4

Disk group A Disk group B

L.

V$ASM FILE

V$ASM ALIAS A

Storage system

I
V$ASM DISK

VSASM OPERATION

Dynamic Performance Views
The dynamic performance views that display the ASM information behave differently
depending on the type of instance they are accessed from. The following gives the view name
and the behavior on an ASM instance and a database instance.
VSASM CLIENT
« ASM—One row for every database instance using a disk group in the ASM instance
» Database—One row for each disk group with the database and ASM instance name
VSASM DISKGROUP
 ASM—One row for every discovered disk group
« Database—A row for all disk groups mounted or dismounted
VSASM TEMPLATE
 ASM—One row for every template present in every mounted disk group
« Database—Rows for all templates in mounted disk groups

VSASM DISK
« ASM—One row for every discovered disk, including disks that are not part of any disk

group
« Database—Rows for disks 1n the disk groups in use by the database instance

Monitoring Long-Running Operations by Using
V$ASM OPERATION

Column Description

GROUP NUMBER Disk group

OPERATION Type of operation: REBAL

STATE State of operation: WAIT or RUN

POWER Power requested for this operation

ACTUAL Power allocated to this operation

SOFAR Number of allocation units moved so far

EST WORK Estimated number of remaining allocation units

EST RATE Estimated number of allocation units moved per minute

EST MINUTES Estimated amount of time (in minutes) for operation
termination

ASM Scalability

ASM imposes the following limits:
+ 63 disk groups

10,000 ASM disks
4 petabytes (PB) per ASM disk
40 exabytes (EB)of storage
1 million files per disk group
Maximum file size:

— External redundancy: 140 PB

— Normal redundancy: 42 PB
— High redundancy: 15 PB

Important Initialization Parameters
with Performance Impact

Parameter
COMPATIBLE

Description

To take advantage of the latest
improvements of a new release

DB BLOCK SIZE

8192 for OLTP and higher for DSS

MEMORY TARGET

Automatically sized memory components

SGA TARGET

Automatic SGA component management

PGA AGGREGATE TARGET

Automatic PGA management

PROCESSES Maximum number of processes that can be
started by that instance
SESSIONS To be used essentially with shared server

UNDO MANAGEMENT

AUTO mode recommended

UNDO TABLESPACE

Undo tablespace to be used by instance

Sizing Memory Initially

As an initial guess for memory allocation:
» Leave 20% of available memory to other applications.
» Give 80% of memory to the Oracle instance.

MEMORY MAX TARGET=(total mem*80%)

By default the memory distribution starts at 60% SGA and
40% PGA.

» Memory distribution will adjust to workload.

UGA and Oracle Shared Server

Dedicated server configuration PGA
4 N\)
UGA
Shared pool Stack User | Cursor
space |session| state
. L data)
Shared server configuration
a p » PGA
Shared pool UGA
or User |Cursor Stack
Large pool session
gep data state space
- N 7
VS$STATNAME OPEN CURSORS
V$SESSTAT SESSION CACHED CURSORS

V$MYSTAT

Large Pool

» Can be configured as a separate memory area in the

SGA, used for memory with:
— 1/O server processes: DBWR IO SLAVES

— Backup and restore operations
— Session memory for the shared servers
— Parallel execution messaging

* |s used to avoid performance overhead caused by
shrinking the shared SQL cache

* |s sized by the LARGE POOL_ SIZE parameter

Database Redo
buffer cache log buffer Shared pool Large pool

Library cache
Data dictionary cache UGA
Results cache

Tuning the Large Pool

* The large pool has one parameter, LARGE POOL_SIZE.
* VSSGASTAT shows used and free memory.

SELECT * FROM V$SGASTAT

WHERE pool = 'large pool';
POOL NAME BYTES
large pool free memory 2814112

large pool session heap 1380192

Undo Tablespace: Best Practices

» Use Automatic Undo Management.
* UNDO RETENTION:

— |s automatically adjusted when the UNDO tablespace has
AUTOEXTEND enabled.

* Undo tablespace size:
— Initial size: Small with AUTOEXTEND enabled

— Steady state: Fix size using the Undo Advisor and add a
20% safe margin.

Temporary Tablespace: Best Practices

Locally managed temporary tablespaces use a uniform extent.
Extent size should be:
* 1 MB to 10 MB extent size:
— For DSS, OLAP applications involving huge work areas
— Where large temporary LOBs are predominant.
» 64 KB or multiples, less than 1 MB:
— Small global temporary tables are predominant.
— OLTP

Temporary tablespace group increases addressability from
terabytes to petabytes.

Automatic Statistics Gathering

* STATISTICS LEVEL = TYPICAL | ALL

- Statistics are gathered by the Optimizer Statistics
Gathering automatic maintenance task.

» This task implicitly determines the following:

Database objects with missing or stale statistics

Appropriate sampling percentage necessary to gather
good statistics on those objects

Appropriate columns that require histograms and the size
of those histograms

Degree of parallelism for statistics gathering
Prioritization of objects on which to collect statistics

Automatic Statistics Collection: Considerations

* You should still manually gather statistics in the following
cases:

— After bulk operations
— When using external tables
— To collect system statistics
— To collect statistics on fixed objects
» Prevent automatic gathering for volatile tables:
— Lock with statistics for representative values
— Lock without statistics implies dynamic sampling.

» Set Optimizer Statistic Preferences for objects that need
special handling.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

